Exercise 92

(a) Use a CAS to differentiate the function

$$
f(x)=\sqrt{\frac{x^{4}-x+1}{x^{4}+x+1}}
$$

and to simplify the result.
(b) Where does the graph of f have horizontal tangents?
(c) Graph f and f^{\prime} on the same screen. Are the graphs consistent with your answer to part (b)?

Solution

Use Mathematica to differentiate the function and simplify the result.

$$
f^{\prime}(x)=\frac{-1+3 x^{4}}{\left(1+x+x^{4}\right)^{2} \sqrt{1-\frac{2 x}{1+x+x^{4}}}}
$$

The graph of f has horizontal tangents where $f^{\prime}(x)=0$.

$$
\frac{-1+3 x^{4}}{\left(1+x+x^{4}\right)^{2} \sqrt{1-\frac{2 x}{1+x+x^{4}}}}=0
$$

This can occur only when the numerator is zero.

$$
-1+3 x^{4}=0
$$

Solve for x.

$$
x= \pm \frac{1}{\sqrt[4]{3}} \approx \pm 0.759836
$$

Below is a plot of $f(x)$ and $f^{\prime}(x)$ versus x.

